Rank Hierarchies for Generalized Quantifiers

نویسندگان

  • H. Jerome Keisler
  • Wafik Boulos Lotfallah
چکیده

We show that for each n and m, there is an existential first order sentence which is NOT logically equivalent to a sentence of quantifier rank at most m in infinitary logic augmented with all generalized quantifiers of arity at most n. We use this to show the strictness of the quantifier rank hierarchies for various logics ranging from existential (or universal) fragments of first order logic to infinitary logics augmented with arbitrary classes of generalized quantifiers of bounded arity. The sentence above is also shown to be equivalent to a first order sentence with at most n+ 2 variables (free and bound). This gives the strictness of the quantifier rank hierarchies for various logics with only n + 2 variables. The proofs use the bijective Ehrenfeucht-Fraisse game and a modification of the building blocks of Hella.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A double arity hierarchy theorem for transitive closure logic

In this paper we prove that the k–ary fragment of transitive closure logic is not contained in the extension of the (k − 1)–ary fragment of partial fixed point logic by all (2k − 1)–ary generalized quantifiers. As a consequence, the arity hierarchies of all the familiar forms of fixed point logic are strict simultaneously with respect to the arity of the induction predicates and the arity of ge...

متن کامل

Hierarchies in Inclusion Logic with Lax Semantics

We study the expressive power of fragments of inclusion logic under the so-called lax team semantics. The fragments are defined either by restricting the number of universal quantifiers or the arity of inclusion atoms in formulae. In case of universal quantifiers, the corresponding hierarchy collapses at the first level. Arity hierarchy is shown to be strict by relating the question to the stud...

متن کامل

GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE

The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...

متن کامل

Interpretation and Processing Time of Generalized Quantifiers: Why your Mental Space Matters

Classical quantifiers (e.g., “all”, “some” and “none”) have been extensively studied in logic and psychology. In contrast, generalized quantifiers (e.g., “most”) allow for fine-grained statements about quantities. The discrepancy in the underlying mental representation and its interpretation among interpreters can affect language use and reasoning. We investigated the effect of quantifier type,...

متن کامل

Attribute-oriented Induction Using Domain Generalization Graphs

Howard J. Hamilton, Robert J. Hilderman, and Nick Cercone Department of Computer Science University of Regina Regina, Saskatchewan, Canada, S4S 0A2 fhamilton,hilder,[email protected] Abstract Attribute-oriented induction summarizes the information in a relational database by repeatedly replacing speci c attribute values with more general concepts according to user-de ned concept hierarchies. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Log. Comput.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011